Skip to content

Closed Graph Theorem Homeworknow

Given a function between two sets , we can form the graph

which is a subset of the Cartesian product .

There are a number of “closed graph theorems” in mathematics which relate the regularity properties of the function with the closure properties of the graph , assuming some “completeness” properties of the domain and range . The most famous of these is the closed graph theorem from functional analysis, which I phrase as follows:

Theorem 1 (Closed graph theorem (functional analysis)) Let be complete normed vector spaces over the reals (i.e. Banach spaces). Then a function is a continuous linear transformation if and only if the graph is both linearly closed (i.e. it is a linear subspace of ) and topologically closed (i.e. closed in the product topology of ).

I like to think of this theorem as linking together qualitative and quantitative notions of regularity preservation properties of an operator ; see this blog post for further discussion.

The theorem is equivalent to the assertion that any continuous linear bijection from one Banach space to another is necessarily an isomorphism in the sense that the inverse map is also continuous and linear. Indeed, to see that this claim implies the closed graph theorem, one applies it to the projection from to , which is a continuous linear bijection; conversely, to deduce this claim from the closed graph theorem, observe that the graph of the inverse is the reflection of the graph of . As such, the closed graph theorem is a corollary of the open mapping theorem, which asserts that any continuous linear surjection from one Banach space to another is open. (Conversely, one can deduce the open mapping theorem from the closed graph theorem by quotienting out the kernel of the continuous surjection to get a bijection.)

It turns out that there is a closed graph theorem (or equivalent reformulations of that theorem, such as an assertion that bijective morphisms between sufficiently “complete” objects are necessarily isomorphisms, or as an open mapping theorem) in many other categories in mathematics as well. Here are some easy ones:

Theorem 2 (Closed graph theorem (linear algebra)) Let be vector spaces over a field . Then a function is a linear transformation if and only if the graph is linearly closed.

Theorem 3 (Closed graph theorem (group theory)) Let be groups. Then a function is a group homomorphism if and only if the graph is closed under the group operations (i.e. it is a subgroup of ).

Theorem 4 (Closed graph theorem (order theory)) Let be totally ordered sets. Then a function is monotone increasing if and only if the graph is totally ordered (using the product order on ).

Remark 1 Similar results to the above three theorems (with similarly easy proofs) hold for other algebraic structures, such as rings (using the usual product of rings), modules, algebras, or Lie algebras, groupoids, or even categories (a map between categories is a functor iff its graph is again a category). (ADDED IN VIEW OF COMMENTS: further examples include affine spaces and -sets (sets with an action of a given group ).) There are also various approximate versions of this theorem that are useful in arithmetic combinatorics, that relate the property of a map being an “approximate homomorphism” in some sense with its graph being an “approximate group” in some sense. This is particularly useful for this subfield of mathematics because there are currently more theorems about approximate groups than about approximate homomorphisms, so that one can profitably use closed graph theorems to transfer results about the former to results about the latter.

A slightly more sophisticated result in the same vein:

Theorem 5 (Closed graph theorem (point set topology)) Let be compact Hausdorff spaces. Then a function is continuous if and only if the graph is topologically closed.

Indeed, the “only if” direction is easy, while for the “if” direction, note that if is a closed subset of , then it is compact Hausdorff, and the projection map from to is then a bijective continuous map between compact Hausdorff spaces, which is then closed, thus open, and hence a homeomorphism, giving the claim.

Note that the compactness hypothesis is necessary: for instance, the function defined by for and for is a function which has a closed graph, but is discontinuous.

A similar result (but relying on a much deeper theorem) is available in algebraic geometry, as I learned after asking this MathOverflow question:

Theorem 6 (Closed graph theorem (algebraic geometry)) Let be normalprojective varieties over an algebraically closed field of characteristic zero. Then a function is a regular map if and only if the graph is Zariski-closed.

Proof: (Sketch) For the only if direction, note that the map is a regular map from the projective variety to the projective variety and is thus a projective morphism, hence is proper. In particular, the image of under this map is Zariski-closed.

Conversely, if is Zariski-closed, then it is also a projective variety, and the projection is a projective morphism from to , which is clearly quasi-finite; by the characteristic zero hypothesis, it is also separated. Applying (Grothendieck’s form of) Zariski’s main theorem, this projection is the composition of an open immersion and a finite map. As projective varieties are complete, the open immersion is an isomorphism, and so the projection from to is finite. Being injective and separable, the degree of this finite map must be one, and hence and are isomorphic, hence (by normality of ) is contained in (the image of) , which makes the map from to regular, which makes regular.

The counterexample of the map given by for and demonstrates why the projective hypothesis is necessary. The necessity of the normality condition (or more precisely, a weak normality condition) is demonstrated by (the projective version of) the map from the cusipdal curve to . (If one restricts attention to smooth varieties, though, normality becomes automatic.) The necessity of characteristic zero is demonstrated by (the projective version of) the inverse of the Frobenius map on a field of characteristic .

There are also a number of closed graph theorems for topological groups, of which the following is typical (see Exercise 3 of these previous blog notes):

Theorem 7 (Closed graph theorem (topological group theory)) Let be -compact, locally compact Hausdorff groups. Then a function is a continuous homomorphism if and only if the graph is both group-theoretically closed and topologically closed.

The hypotheses of being -compact, locally compact, and Hausdorff can be relaxed somewhat, but I doubt that they can be eliminated entirely (though I do not have a ready counterexample for this).

In several complex variables, it is a classical theorem (see e.g. Lemma 4 of this blog post) that a holomorphic function from a domain in to is locally injective if and only if it is a local diffeomorphism (i.e. its derivative is everywhere non-singular). This leads to a closed graph theorem for complex manifolds:

Theorem 8 (Closed graph theorem (complex manifolds)) Let be complex manifolds. Then a function is holomorphic if and only if the graph is a complex manifold (using the complex structure inherited from ) of the same dimension as .

Indeed, one applies the previous observation to the projection from to . The dimension requirement is needed, as can be seen from the example of the map defined by for and .

(ADDED LATER:) There is a real analogue to the above theorem:

Theorem 9 (Closed graph theorem (real manifolds)) Let be real manifolds. Then a function is continuous if and only if the graph is a real manifold of the same dimension as .

This theorem can be proven by applying invariance of domain (discussed in this previous post) to the projection of to , to show that it is open if has the same dimension as .

Note though that the analogous claim for smooth real manifolds fails: the function defined by has a smooth graph, but is not itself smooth.

(ADDED YET LATER:) Here is an easy closed graph theorem in the symplectic category:

Theorem 10 (Closed graph theorem (symplectic geometry)) Let and be smooth symplectic manifolds of the same dimension. Then a smooth map is a symplectic morphism (i.e. ) if and only if the graph is a Lagrangian submanifold of with the symplectic form .

In view of the symplectic rigidity phenomenon, it is likely that the smoothness hypotheses on can be relaxed substantially, but I will not try to formulate such a result here.

There are presumably many further examples of closed graph theorems (or closely related theorems, such as criteria for inverting a morphism, or open mapping type theorems) throughout mathematics; I would be interested to know of further examples.

Zabreiko's lemma (from P. P. Zabreiko, A theorem for semiadditive functionals, Functional analysis and its applications 3 (1), 1969, 70–72) is not as well known as it deserves to be and I think it fits the bill to some extent, so let me state that result first:

Lemma (Zabreiko, 1969) Let $X$ be a Banach space and let $p: X \to [0,\infty)$ be a seminorm. If for all absolutely convergent series $\sum_{n=0}^\infty x_n$ in $X$ we have $$ p\left(\sum_{n=0}^\infty x_n\right) \leq \sum_{n=0}^\infty p(x_n) \in [0,\infty] $$ then $p$ is continuous. That is to say, there exists a constant $C \geq 0$ such that $p(x) \leq C\|x\|$ for all $x \in X$.

Assuming this lemma, let $T: X \to Y$ be a discontinuous linear map between Banach spaces, consider the seminorm $p(x) = \|Tx\|$ and observe that there must exist an absolutely summable sequence $(x_n)_{n=0}^\infty$ and $\varepsilon \gt 0$ such that $$ p\left(\sum_{n=0}^\infty x_n\right) \geq \sum_{n=0}^\infty p(x_n) + \varepsilon. $$ Since the left hand side is finite, both $a_{N} = \sum_{n=1}^N x_n$ and $b_N = Ta_N$ are Cauchy sequences with limits $a$ and $b$, respectively. We have $\|b_N\| \leq \|T(a)\| - \varepsilon$, so $\|T(a) - b_N\| \geq \varepsilon$ for all $N$ and thus $\|T(a) - b\| \geq \varepsilon$. In other words $(a_N,T(a_N)) \to (a,b)$ but $b \neq T(a)$, so the graph of $T$ is not closed.

Of course, I should make the disclaimer that Zabreiko's lemma is actually stronger than the usual consequences of the Baire category theorem in basic functional analysis and thus it does not answer the question as asked. As you mention in your question, as soon as the closed graph theorem is established, the inverse mapping theorem and the open mapping theorem follow easily, as I also explain in this thread. Moreover, the uniform boundedness principle is a straightforward consequence, too:


Use Zabreiko's lemma to prove:

  1. the uniform boundedness principle;
    Hint: set $p(x) = \sup_{n \in \mathbb{N}} \|T_n x\|$.
  2. the inverse mapping theorem.
    Hint: set $p(x) = \|T^{-1}x\|$.

The proof of Zabreiko's lemma is very similar to the usual proof by Banach–Schauder of the open mapping theorem:

Proof. Let $A_n = \{x \in X\,:\,p(x) \leq n\}$ and $F_n = \overline{A_n}$. Note that $A_n$ and $F_n$ are symmetric and convex because $p$ is a seminorm. We have $X = \bigcup_{n=1}^\infty F_n$ and Baire's theorem implies that there is $N$ such that the interior of $F_N$ is nonempty.

Therefore there are $x_0 \in X$ and $R \gt 0$ such that $B_R(x_0) \subset F_N$. By symmetry of $F_N$ we have $B_{R}(-x_0) = -B_{R}(x_0) \subset F_n$, too. If $\|x\| \lt R$ then $x+x_0 \in B_{R}(x_0)$ and $x-x_0 \in B_{R}(-x_0)$, so $x \pm x_0 \in F_{N}$. By convexity of $F_N$ it follows that $$ x = \frac{1}{2}(x-x_0) + \frac{1}{2}(x+x_0) \in F_N, $$ so $B_R(0) \subset F_N$.

Our goal is to establish that $$ \begin{equation}\tag{$\ast$} B_{R}(0) \subset A_N \end{equation} $$ because then for $x \neq 0$ we have with $\lambda = \frac{R}{\|x\|(1+\varepsilon)}$ that $\lambda x \in B_{R}(0) \subset A_N$, so $p(\lambda x) \leq N$ and thus $p(x) \leq \frac{N(1+\varepsilon)}{R} \|x\|$, as desired.

Proof of $(\ast)$. Suppose $\|x\| \lt R$ and choose $r$ such that $\|x\| \lt r \lt R$. Fix $0 \lt q \lt 1-\frac{r}{R}$, so $\frac{1}{1-q} \frac{r}{R} \lt 1$. Then $y = \frac{R}{r}x \in B_{R}(0) \subset F_N = \overline{A_N}$, so there is $y_{0} \in A_N$ such that $\|y-y_0\| \lt qR$, so $q^{-1}(y-y_0) \in B_R$. Now choose $y_1 \in A_N$ with $\|q^{-1}(y-y_0) - y_1\| \lt q R$, so $\|(y-y_0 - qy_1)\| \lt q^2 R$. By induction we obtain a sequence $(y_k)_{k=0}^\infty \subset A_N$ such that $$ \left\| y - \sum_{k=0}^n q^k y_k\right\| \lt q^n R \quad \text{for all }n \geq 0, $$ hence $y = \sum_{k=0}^\infty q^k y_k$. Observe that by construction $\|y_n\| \leq R + qR$ for all $n$, so the series $y = \sum_{k=0}^\infty q^k y_k$ is absolutely convergent. But then the countable subadditivity hypothesis on $p$ implies that $$ p(y) = p\left(\sum_{k=0}^\infty q^k y_k\right) \leq \sum_{k=0}^\infty q^k p(y_k) \leq \frac{1}{1-q} N $$ and thus $p(x) \leq \frac{r}{R} \frac{1}{1-q} N \lt N$ which means $x \in A_N$, as we wanted.

Added: A version of this answer appeared on the Mathematics Community Blog. Thanks to Norbert and others for their efforts.